PSA Recurrent M_0 Prostate Cancer: The Who, When and How of ADT Monotherapy

Martin Gleave MD, FRCSC, FACS
Professor and Chair, Department of Urologic Sciences, Distinguished University Scholar, UBC
B.C. Leadership Chair in Prostate Research
Director, The Vancouver Prostate Centre

Disclosure of Conflicts of Interest
None Related to Content of this Presentation
Defining PSA Recurrent Prostate Cancer (BCR)

- No consensus for post surgery BCR
 - Confounded by emergence of hypersensitive assays (<0.2; <0.02; <0.008)

- Met-free survival decreases as PSA limit increases from 0.2–0.4 uM
 - BCR with PSA levels of 0.2, 0.3, and 0.4 ng/mL associated with rising PSA in 49%, 62%, and 72% of patients respectively (Amling et al J Urol 2001;165:1146–51)

- Post surgery definitions of BCR include:
 - 3 successive PSA rises (final >0.2), single PSA >0.4, or use of secondary therapy for detectable PSA >0.1 (Stephenson et al Eur Urol 2014)

- RTOG-ASTRO Phoenix Consensus definition of BCR after RT
 - any PSA increase >2 ng/mL higher than PSA nadir (regardless of nadir)
Clinical course highly variable
- 5-year risk of clinical progression from 27–60% (Pound et al)
- Some rapidly progress to metastases, others have negligible threat to longevity

Poor surrogate for PCa specific mortality 10 yrs post-RP (88% vs 93%)
- 15 yr after BCR, ~1/3 are alive, 1/3 dead from Pca, and 1/3 dead from other causes

Need to assess individual risk to longevity or quality of life
- based on life expectancy
- pace of progression
- local or regional (eg. salvagable) or systemic (eg. palliative) disease
ADT in PSA Recurrent Prostate Cancer

- **Who needs ADT monotherapy?**
 - Those not candidates for salvage Rx
 - Those at risk of met progression (need risk stratify)

- **When to treat with ADT?**
 - Non-curative but prolongs OS in high risk disease
 - Impairs QoL, and longevity in low risk disease

- **How to treat with ADT?**
 - Continuous vs intermittent?
 - Future combinations of MAB, chemo-ADT
Risk stratification in BCR
Clinico-Pathologic Features

- Met-free survival after PSA recurrence is most strongly influenced by PSA doubling time and high Gleason score (and N status)
 - Independent of the type of local therapy (RP or RT)
 - PSADT <3 months as a surrogate for 5 yr PCSM (31% vs 1%), but most men dying with BCR have PSADT > 3 months

- Optimal PSADT cut-points for stratification remain uncertain
 - Cut-points of ≤ 3 vs > 3 mos, ≤ 6 vs > 6 mos, ≤ 10 vs > 10 mos and ≤ 12 vs > 12 mos.

PSAdt
Zhou et al, J Clin Oncol 2005; 23: 6992-8
D’amico AV, Cancer 1993; 72: 2638-43
Zagars GK, Radiother Oncol 1997; 44: 213 – 21
Freedland SJ JAMA 2005 ; 294 : 433 – 9

Gleason Grade
Okotie OT et al J Urol; 171: 2260 – 4, 2004
Kim-Sing C,. Int J Radiat Oncol Biol Phys 2004 ; 60 : 463 – 9
GS and PSAdt independent predictors of MFS in multivariate analysis:

- PSAdt < 3.0 vs 3.0 – 8.9 vs 9.0 – 14.9 vs ≥ 15.0 months
- Gleason score ≤ 6 vs 7 vs 8 – 10
BC data on intervention after EBRT failure

Those with PSAdt < 3 months do very poorly

Factors predicting death on MVA
PSAdt \(p = 0.007 \)
Gleason \(p = 0.018 \)
Intervention time \(p = 0.0006 \)
Intervention PSA n.s.
iPSA n.s.
T stage n.s.

Nomogram predicting PCSM for all patients had an internally validated c-index of 0.774

Use of PSADT added modest prognostic information
 - short PSADT correlated with higher PSA levels at BCR, shorter time to BCR, and adverse pathology

Web-based versions are available for free use at http://www.r-calc.com
Signatures and Sequencing

Can we better classify cancers more or less likely to respond to salvage RT post-RP?

RNA expression assays: Oncotype (Genome Health); Polaris (Myriad); GC (GenomeDx)

DNA sequencing assays: Copy number; percent genome alterations; germline BRCA?
Meta-analysis of 852 patients from five cohorts shows Decipher is a significant predictor of metastasis across all clinical subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Patients</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>730</td>
<td>1.46 (1.31-1.64)</td>
<td><0.001</td>
</tr>
<tr>
<td>African-American</td>
<td>106</td>
<td>1.43 (0.95-2.15)</td>
<td>0.087</td>
</tr>
<tr>
<td>Preoperative PSA (ng/mL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>457</td>
<td>1.91 (1.29-2.85)</td>
<td>0.001</td>
</tr>
<tr>
<td>5-10</td>
<td>277</td>
<td>1.42 (1.19-1.7)</td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td>457</td>
<td>1.47 (1.25-1.72)</td>
<td></td>
</tr>
<tr>
<td>RP Gleason Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤3+4</td>
<td>459</td>
<td>1.43 (1.11-1.85)</td>
<td>0.007</td>
</tr>
<tr>
<td>4+3</td>
<td>171</td>
<td>1.46 (1.15-1.86)</td>
<td>0.002</td>
</tr>
<tr>
<td>≥8</td>
<td>222</td>
<td>1.24 (1.06-1.45)</td>
<td>0.008</td>
</tr>
<tr>
<td>Surgical Margins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>356</td>
<td>1.45 (1.21-1.73)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>499</td>
<td>1.44 (1.25-1.66)</td>
<td></td>
</tr>
<tr>
<td>Extraprostatic Extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>492</td>
<td>1.44 (1.16-1.78)</td>
<td>0.001</td>
</tr>
<tr>
<td>Present</td>
<td>359</td>
<td>1.42 (1.24-1.63)</td>
<td></td>
</tr>
<tr>
<td>Seminal Vesicle Invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>614</td>
<td>1.48 (1.27-1.72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Present</td>
<td>238</td>
<td>1.37 (1.15-1.64)</td>
<td>0.001</td>
</tr>
<tr>
<td>Lymph Node Invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>805</td>
<td>1.45 (1.28-1.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Positive</td>
<td>49</td>
<td>1.36 (1.06-1.76)</td>
<td>0.016</td>
</tr>
<tr>
<td>Treatment Modality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Prostatectomy alone</td>
<td>421</td>
<td>1.47 (1.24-1.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adj. RT</td>
<td>140</td>
<td>1.86 (0.92-3.76)</td>
<td>0.085</td>
</tr>
<tr>
<td>Salvage RT</td>
<td>213</td>
<td>1.44 (1.19-1.74)</td>
<td>0.001</td>
</tr>
<tr>
<td>Adj. ADT</td>
<td>44</td>
<td>1.52 (0.97-2.39)</td>
<td>0.068</td>
</tr>
<tr>
<td>Salvage ADT</td>
<td>116</td>
<td>1.27 (1.02-1.59)</td>
<td>0.035</td>
</tr>
<tr>
<td>ADT</td>
<td>160</td>
<td>1.33 (1.11-1.61)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

- Hazard ratio per 0.1 (10% increase) in Decipher score
- Decipher improved the ability to predict the cumulative incidence of metastases in nearly all subgroups based on clinicopathologic factors, treatment factors, and demographic factors

Implication: high scores = systemic disease ⇒ need for ADT

Spratt et al., in press J Clin Onc
Utilization of a Genomic Classifier for Prediction of Metastasis Following Salvage Radiation Therapy after Radical Prostatectomy

*Department of Surgery, Division of Urology, Center for Integrative Research on Cancer and Lifestyle, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; ‡Surgery Section, Durham Veterans Affairs Medical Center, Durham, NC, USA; §Genentech Resolutions Inc, Vancouver, BC, Canada; ¶Department of Histopathology and Nephrology, Duke University, Durham, NC, USA; ¶San Diego Pathologists Medical Group, San Diego, CA, USA; †Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA; ‡Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA; *University of Michigan, Ann Arbor, MI, USA; ‡Department of Urology, Mayo Clinic, Rochester, MN, USA

• c-index for GC was 0.85 vs 0.63–0.65 for clinico-pathologic risk models;
• GC is most significant predictor of mets post SRT on MVA
• May reclassify high risk by CAPRA into low risk by GC
• High GC pts may help guide when to treat with combined ADT + SRT
Patients with high PORTOS have lower rates of metastasis with post-operative radiation

High PORTOS Score (top quartile) = 7 fold better response to radiation after RP
PORTOS is NOT prognostic of metastasis in patients NOT treated by radiation
PSA Recurrent CaP – Who are candidates for Intervention?

Imaging Work-up

6.10.4.6 Guidelines for imaging and second-line therapy after treatment with curative intent

<table>
<thead>
<tr>
<th>Biochemical recurrence (BCR) after RP</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the case of BCR, bone scan and abdominopelvic CT should be performed only in patients</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>with a PSA level > 10 ng/mL, or with high PSA kinetics (PSA-DT < 6 mo or a PSA velocity > 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ng/mL/mo) or in patients with symptoms of bone disease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Choline PET/CT is not recommended in patients with BCR and a PSA-level < 1 ng/mL</td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Biochemical recurrence after RT

In patients with BCR who are candidates for local salvage therapy, prostate mpMRI may be used to
localise abnormal areas and guide biopsy. 3 C

Newer more sensitive Imaging modalities:
- NaF PET bone scan
- PSMA PET imaging
PET Imaging to Identify and Target Oligometastases

- 65-yr-old man had RP 11 yrs ago
- In 2014, PSA increased to 2 and then 5 in 2015.
- Started on ADT by local urologist

PSMA PET

Salvage right PLND 2016

PSA 6 months post op < 0.008
This 50-year-old had RP 2012 for Gleason 4+5=9, pT2, margin negative, N1 Pca.

PSA increased to 1.7 and treated with ADT + salvage RT.

Second PSA relapse
Referred for PSMA PET

SBRT on COMET 2016

PSA 6 months < 0.01 on ADT
PSA Recurrent MO CaP - Who are candidates for ADT Monotherapy?

- Initial consideration given to candidacy for salvage Rx vs ADT monotherapy for men with M0 BCR deemed a risk for PCSM (life expectancy, PSAdt, grade, pN1)

Multi-modal Salvage Therapy:
- salvage ADT + RT standard of care
- Selective use of PSMA-PET detected oligomets for salvage LND, SBRT

ADT monotherapy is an option for men
- With rising PSA post salvage RT
- When RT is contraindicated (eg. prior RT, IBD, contracture)
- Less likely to benefit from post-surgery RT (*give most benefit of doubt*)
 - Unfavorable PSA kinetics (PSAdt< 6 mos; PSA >1);
 - pN+;
 - ? High Decipher, low PORTOS
Who needs ADT monotherapy?
- Those not candidates for salvage Rx
- Those at risk of metastatic progression

When to treat with ADT?
- Non-curative but prolongs OS in high risk disease
- Impairs QoL, and longevity in low risk disease

How to treat with ADT?
- Continuous vs intermittent?
- Future combinations of MAB, chemo-ADT
Optimal Timing of ADT - Immediate vs Delayed?

Phase III Studies Evidence Supporting Early Therapy

1. **EORTC**: improved survival with immediate HT post-RT (Bolla et al, NEJM 1995)

2. **ECOG**: 2% vs 30% PCa mortality with immediate vs delayed HT in N+ post-RP (Messing et al, NEJM 2000)

3. **MRC - improved OS M0** (Br J Urol 1997; 79: 235–46)

4. **EORTC 30891 in 985 M0 patients - improved OS with immediate ADT (HR 1.25)** (Studer et al. JCO. 2006 ;24(12):1868-76)

5. **EPC Data (Casodex monotherapy trial)** (McLeod DG et al. BJU Int 2005; 97: 247–54)
 - OS improved in Casodex arm in high risk CaP (HR 0.68) but reduced in low risk CaP (HR 1.47)

6. **TOAD Trial – Immediate ADT improved OS in men with M0 PSA relapsing PCA** (Lancet Oncology 2016)
At What PSA Level Should We Initiate ADT?

Conjecture From Messing, et al* Study of Immediate vs. Delayed Hormonal Therapy for D1 Disease After RP

1. 78% of patients in immediate ADT group had undetectable PSA when they started therapy
2. The median PSA level at the start of ADT in observation group was 14 ng/mL
3. Immediate ADT arm enjoyed a marked disease-specific survival advantage compared with those who were observed
4. Therefore, the “window of opportunity” may be between 0.2 and <14 ng/mL

Early ADT and Survival Among Patients with Localized Disease: EPC Programme

- reduces radiographic and biochemical time to progression
- OS adversely affected in Casodex arm in low risk CaP! (HR ~1.4)
- OS improved in Casodex arm in high risk CaP! (HR ~1.4)

McLeod DG et al. BJU Int 2005; 97: 247–54
Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial

Gillian M Duchesne, Henry H Woo, Julie K Bassett, Steven J Bowe, Catharine D’Este, Mark Frydenberg, Madeleine King, Leo Ledwich, Andrew Loblaw, Shawn Malone, Jeremy Millar, Roger Milne, Rosemary G Smith, Nigel Spry, Martin Stocklee, Rodney A Syme*, Keen Hui Tai, Sandra Turner

- **OS Entire population**

 16 (11%) died in immediate ADT arm vs 30 (20%) in delayed arm (P=0.047)

- **PCA Complication-free survival**

 Number at risk

<table>
<thead>
<tr>
<th>Follow-up (years)</th>
<th>Delayed ADT arm</th>
<th>Immediate ADT arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>151</td>
<td>142</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>138</td>
</tr>
<tr>
<td>2</td>
<td>135</td>
<td>127</td>
</tr>
<tr>
<td>3</td>
<td>117</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Limitations** - accrual was slow; only 1/3 of screened subjects were randomized; f/u only to 5 yrs; few events

- **261 men with BCR after previous RP or RT, and 32 men not considered suitable for curative treatment**

- **Randomized 1:1 to immediate or deferred (>2 yrs) ADT of choice (most treated with intermittent ADT)**

- **41% of delayed arm did not require ADT during study; but those who did started after median of 1.58 yrs**
ADT in PSA Recurrent Prostate Cancer

- Who needs ADT therapy?
 - Who are not candidates for salvage Rx
 - Who are at risk of metastatic progression

- When to treat with ADT?
 - PSAdt <12 months, or PSA >4

- How to treat with ADT?
 - Continuous vs intermittent?
 - Future combinations of MAB, chemo-ADT (Tax 3503)
Types of intervention

• Castration therapy
 – LHRH agonist or antagonist, vs (orchiectomy)
 • +/- NSAA (bicalutamide)
 – Intermittent vs continuous

• Alternatives – not licensed in N America
 – 5-α reductase inhibitor +/- antiandrogen
 – Antiandrogen monotherapy
• Canadian NCIC study
 – SWOG, CTSU, MRC (UK)
 – 1999 - 2005
 – 1386 randomized

• Prior curative RT at least a year ago
 – Rising PSA level >3 ng/ml and >nadir
 – Serum testosterone >5 nmol/L (144 ng/dl)
 – Life expectancy >5 years, No evidence mets on bone scan

• Intermittent arm - 8-month treatment cycle
 – Off-cycle started if PSA <4 ng/ml, no evidence of clinical progression
 – During off-cycle:
 • PSA q2 months until 10 ng/ml, with no evidence of disease progression
NCIC PR.7 – CAS vs IAS in post-RT failures

- Median F/U 6.5 years
- Time to progression favours IAS (HR 0.83, p=0.06) but trial design may bias IAS arm
- **Overall survival with IAS non-inferior to CAS**
- Only 27% of time was spent on therapy

Crook et al NEJM 367: 2012
Investigator-Reported Cause of Death

<table>
<thead>
<tr>
<th>Cause</th>
<th>Deaths in Intermittent ADT Group (n=268)</th>
<th>Deaths in Continuous ADT Group (n=256)</th>
<th>Total Deaths (n=524)</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate cancer or related causes</td>
<td>120</td>
<td>94</td>
<td>214</td>
<td>1.18 (0.90-1.55)</td>
<td>0.24</td>
</tr>
<tr>
<td>Unrelated to prostate cancer</td>
<td>148</td>
<td>162</td>
<td>310</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: Hazard ratio and p-value for deaths unrelated to prostate cancer were not reported.

Secondary Endpoint: Quality of Life

• IAS group had better QoL related to:
 – hot flashes (p<0.001)
 – desire for sexual activity (p<0.001)
 – urinary symptoms (p=0.006)
 – trend towards improved fatigue (p=0.07)

• No significant difference in functional domains

Primary Objective: To evaluate efficacy, as measured by metastasis-free survival (MFS)

Secondary: OS; treatment-free proportion; time to CRPC

Primary Assessment: Central radiographic imaging approximately every 6 months

Key Inclusion Criteria
- PSA doubling time ≤ 9 months as calculated by the sponsor
- Screening PSA ≥ 2.0 ng/mL post RP or ≥ 5.0 ng/mL and ≥ to nadir + 2 ng/mL post RT
Estimated % Patients on Treatment Holiday Due to Undetectable PSA*

*Based on internal enrollment projections
EMBARK Design Challenges

1:1:1 Randomization Stratification

Enzalutamide

Enzalutamide + Leuprolide

Placebo + Leuprolide

Informed Consent

Screening Day -28 to -1

N=1860

Primary Assessment: Radiographic imaging approximately every 6 months

Daily enzalutamide

Daily enzalutamide or placebo

Leuprolide

PSA < 0.2 ng/mL?

Yes

No

Treatment Suspension

Remain on Treatment

Treatment Re-start

Local PSA results leading to treatment discontinuation

Manageable ADT related AE Treatment Discontinuations

NO MFS Event
Summary: Who, When and How Regarding ADT Monotherapy for M0 BCR?

- Earlier, compared to deferred, ADT prolongs OS in men at high risk of dying of their disease
 - long life exp, PSAdt < 12 months, PSA > 4
 - Selection improves with genomic and imaging biomarkers

- Avoid ADT in low risk, slowly progressive disease

- IAS is equivalent to CAS in M0 or N+ disease, reduces AE’s associated with ADT, and is standard of care for this population of patients

- Reasonable to speculate that more potent AR pathway inhibition will prolong OS in appropriately selected men