Tumour biopsy in men with metastatic prostate cancer: What should the pathologist report?

Mark A. Rubin, MD
DIRECTOR, ENGLANDER INSTITUTE FOR PRECISION MEDICINE
PROFESSOR AND VICE CHAIR OF EXPERIMENTAL PATHOLOGY
DEPARTMENT OF PATHOLOGY AND LABORATORY MEDICINE
WEILL CORNELL MEDICAL COLLEGE
Taxonomy of disease
Common Molecular Alterations in Prostate Cancer

Most Common PCA Specific mutations

Tomlins et al, Science 2005

Common Somatic Alteration in Localized Prostate Cancer

- **PIK3CA**
- **ZNF595**
- **SCN11A**
- **FOXA1**
- **C14orf49**
- **NIPA2**
- **THSD7B**
- **CDKN1B**
- **PTEN**
- **TP53**
- **SPOP**
Most Common Recurrent Point Mutation in Prostate Cancer: SPOP mutations affect substrate binding

Blattner et al., Cancer Cell 2017 (in press)

Barbieri, Baca et al., Nature Genetics 2012
Mutations Enriched in CRPC

Enriched:
- AR
- MYC
- PTEN
- TP53
- RB1
- BRCA2

Depleted:
- SPOP

Van Allen, Schultz, IDT et al., unpublished
Prostate Cancer Resistance on Androgen Deprivation Therapy (ADP)

Work around
- Reactivate AR
- ARmut
- AR SV

New route
- Adopt New pathway
- wnt PI3K/AKT

Indifference
- Lineage plasticity
- True AR independence

AR+ AR+/−
A model of progressive reprogramming

Androgen-dependent, AR⁺
In castrate-resistant prostate cancer (luminal epithelial adenocarcinoma), cells express and depend upon androgen receptor (AR⁺) for growth.

Androgen-indifferent, AR⁺/−
After treatment with an AR antagonist, cells with altered RB1 and TP53 are selected. Factors including SOX2 and EZH2 contribute to dedifferentiation and plasticity.

Androgen-independent, AR⁻
Cells established are most often reprogrammed to the neuroendocrine lineage that is resistant to enzalutamide.

Comment by Kelly and Balk, Science 2017
Clinical Considerations for the pathology interpretation of a mPCA Biopsy

• **No systematic study yet to address:**
 – Morphology for mCRPC
 – Association between pathology and **clinical outcome** (response to treatment/disease progression)
 – Association between pathology and **genomic/transcriptomic** findings
SU2C-PCF Prostate Dream Team Leaders and Principals
Multi-institutional study workflow

Clinical sites
- UW, RM-ICR, UM, DFCI, MSKCC, BIDMC, Weill-Cornell, Karmanos

Pathology data coordination
- Weill-Cornell

Sequencing
- UM
- Broad Institute

Data analysis
- UM
- Broad Institute

Clinical data integration
- PCCTC, MSKCC

Precision Medicine Tumor Board (PMTB)

Data visualization
- cBio portal
- MSKCC

Integrative Clinical Genomics of Prostate Cancer
Robinson et al., 2015, Cell
Pathology Protocol for Evaluation of metastatic CRPC Biopsy

Frequently only rare tumor cells are available for analysis

[Images: HE, x40 and ERG, x20]

Mosquera et al., SU2C/PCF Protocol
Pathology review workflow

All Participants

- Retrieve all H&E frozen sections
- Retrieve a subset of FFPE slides (aim: ~20%)
- Independent review: each case reviewed by at least two pathologists

Weill Cornell Medicine

- Slides centralized at Weill Cornell
- Slide scanning (Aperio, 40X)
- Cases integrated into Profiler (an online slide review interface)

- Consensus review of discordant cases
- Data analysis
- Correlation with molecular findings
Workshop Attendees: mCRPC Pathology

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Organization/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Juan Miguel</td>
<td>Weill Cornell</td>
</tr>
<tr>
<td>2</td>
<td>Brian</td>
<td>Weill Cornell</td>
</tr>
<tr>
<td>3</td>
<td>Gustavo</td>
<td>University of Texas Health Science Center</td>
</tr>
<tr>
<td>4</td>
<td>Martin</td>
<td>Vancouver Prostate Centre</td>
</tr>
<tr>
<td>5</td>
<td>Mahul</td>
<td>Cedars Sinai</td>
</tr>
<tr>
<td>6</td>
<td>Larry</td>
<td>University of Washington</td>
</tr>
<tr>
<td>7</td>
<td>Victor</td>
<td>Memorial Sloan-Kettering Cancer Center</td>
</tr>
<tr>
<td>8</td>
<td>Jaioti</td>
<td>David Geffen School of Medicine at UCLA</td>
</tr>
<tr>
<td>9</td>
<td>Scott</td>
<td>University of Michigan Medical School</td>
</tr>
<tr>
<td>10</td>
<td>Jonathan</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>11</td>
<td>Tamara</td>
<td>Johns Hopkins Medical Institutions</td>
</tr>
<tr>
<td>12</td>
<td>Chris</td>
<td>University of Texas MD Anderson Cancer Center</td>
</tr>
<tr>
<td>13</td>
<td>Misha</td>
<td>Weill Cornell Medical College</td>
</tr>
<tr>
<td>14</td>
<td>Mark</td>
<td>Weill Cornell Medical College</td>
</tr>
</tbody>
</table>

Proposed Morphologic Classification of Prostate Cancer With Neuroendocrine Differentiation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Usual high grade prostatic adenocarcinoma (no apparent neuroendocrine differentiation)</td>
</tr>
<tr>
<td>B</td>
<td>Usual high grade prostatic adenocarcinoma with apparent neuroendocrine differentiation</td>
</tr>
<tr>
<td>C</td>
<td>Pure small cell neuroendocrine carcinoma</td>
</tr>
<tr>
<td>D</td>
<td>Pure large cell neuroendocrine carcinoma</td>
</tr>
<tr>
<td>E</td>
<td>Mixed neuroendocrine carcinoma - acinar adenocarcinoma</td>
</tr>
<tr>
<td>F</td>
<td>Paneth cell-like neuroendocrine differentiation</td>
</tr>
<tr>
<td>G</td>
<td>Intermediate Atypical Carcinoma</td>
</tr>
<tr>
<td>H</td>
<td>Other (including no tumor or atypical cells)</td>
</tr>
</tbody>
</table>

Profiler: an online interface for slide review

Dropdown menus and text fields for review parameters

Profiler: an online interface for slide review

Adjustable magnification on whole slides (up to 40X)
Diagnosis

Usual prostatic adenocarcinoma

Adenocarcinoma with neuroendocrine differentiation apparent on H&E

Small cell neuroendocrine carcinoma

Used classification:

Additional proposed parameters

• Tumor content in sample
 - Tumor purity (%)
 - Overall tumor quantity (moderate, scant, abundant)

• **Nuclear pleomorphism** (moderate, minimal, severe)

• **Prominent nucleoli** (yes, no)

• **Special features** (squamous, sarcomatoid, other...)

• **Inflammation** (minimal, moderate, severe)
Nuclear pleomorphism

Moderate
Most frequent

Minimal
Bland nuclei
Possible overlap with IAC

Severe
Uncommon
Correlation with genomic findings?
Intermediate Atypical Carcinoma (IAC)

- 29% of mCRPC
- Median OS = 19.1 months
 (small cell ca. = 12.8 mo., adenocarcinoma = 25.8 mo.)

WCDT, Small et al., ASCO 2016, USCAP 2017
Specific challenges of frozen sections

Quality
- e.g. bone biopsies

Morphology
- e.g., what are the criteria for Intermediate Atypical Carcinoma on frozen section?
Preliminary observations

- Review cohort: 288/405 (71%) SU2C patients; 314 slides in total (all frozen sections)

- Based on first 385 replies from 6 reviewers:
 - the agreement rate for diagnosis was 79%
 - neuroendocrine differentiation was called in 10% of cases

* “Other”: includes “carcinoma NOS”, “atypical cells” and “no apparent tumor cells on H&E”.
West Coast Dream Teams at ASCO 2017

Robinson, IDT, Cell 2015
Small, WCDT, ASCO 2016
Huang, WCDT, USCAP 2017
West Coast Dream Teams at USCAP 2017

Huang, WCDT, USCAP 2017

- AdCa: 30%
- IAC: 29%
- SCNC: 13%
- Mixed: 28%
West Coast Dream Teams at USCAP 2017

Adenoca Intermediate Atypical Ca Small Cell Neuroendocrine

IAC express AR (80%), survival intermediate between AdCa and SCNC, and distinct 50 gene signature
Compared characteristics of pathology reviews from both Teams

<table>
<thead>
<tr>
<th>Clinical status</th>
<th>West Coast Dream Team</th>
<th>International Dream Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abi/Enza-resistant patients</td>
<td>Some biopsies before Abi/Enza</td>
<td></td>
</tr>
<tr>
<td>Reviewed material</td>
<td>FFPE</td>
<td>Frozen sections</td>
</tr>
<tr>
<td>IHC used in review?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>% NEPC (without IAC)</td>
<td>12% (small cell carcinoma)</td>
<td>~ 4% (preliminary review)</td>
</tr>
<tr>
<td>% IAC</td>
<td>29%</td>
<td>TBD</td>
</tr>
<tr>
<td>Tumor enrichment method</td>
<td>Laser capture microdissection</td>
<td>Macrodisssection or none</td>
</tr>
<tr>
<td>Sequencing tests performed</td>
<td>RNA-seq</td>
<td>WES and RNA-seq</td>
</tr>
</tbody>
</table>
Clinical Considerations for the pathology interpretation of a mPCA Biopsy

• When a pathologist tells a clinician there are NE features the clinician routinely thinks:
 A) this tumor is more aggressive and the patient will have a shorter rPFS and OS;
 B) this patient will probably not respond to hormone therapy and should probably get platinum based chemo;
 C) there is more likely to be visceral disease, etc.

• What is the clinical relevance of CRPC with NE features? Does this even matter?

• Important considerations: Do they do badly? Are they treatment refractory? Are they AR negative? RB lost?

De Bono and SU2C team, On Going Conversation
Clinical Considerations for the pathology interpretation of a mPCA Biopsy

• Optimal pathology from FFPE material – best morphology and ability to perform IHC/WES
• Morphology as per Consensus Classification* (note: we do not know the meaning of NE features and do NOT suggest that it excludes AR modulating therapies.
• NO Gleason grading!

Clinical Considerations for the pathology interpretation of a mPCA Biopsy

• Frozen material useful for RNAseq and organoid growth

• Possible ancillary studies include: AR, PSMA, PSA*, RB, TP53 (missense mutations), PTEN, NE (CD56/Synaptophysin, Chromogranin, NSE)

Research grade

* Is it prostate???
Future (near and far)

- cfDNA
- Orgnaoids
- RNAseq from FFPE
- Proteomics/metabolomics /epigenetics
- Whole Genome Sequencing

mCRPC Workshop Part II

• Review cases from multiple studies (WCDT, IDT, and others)
• Develop blinded consensus
• Explore for clinical and molecular associations
• Representation from multiple institutions
• Develop practical guidelines for evaluation including reference images and recommendations for use of IHC & molecular studies.